
Sound 
 
Sample - Measure of the analogue signal at a given point in time 
 
Sample rate - number of samples taken per second and is measured in Hertz. 
 
Sample resolution - number of bits used to represent each sample  
 
The size of sound files can be calculated using: 
 
size of file = length (seconds) x sample rate x sampling resolution   

 
For sound to be stored digitally on a computer it needs to be converted from its 
continuous analogue form into a discrete binary values. The steps are: 
1. Microphone detects the sound wave and converts it into an electrical 

(analogue) signal 
2. The analogue signal is sampled at regular intervals 
3. The samples are approximated to the nearest integer (quantised) 
4. Each integer is encoded in binary with a fixed number of bits 
 
Original analogue signal                                      Sample signal at regular intervals 

 
 
 
 
 
 
 
 

Integer values give to each sample                   Encode as binary 
 
 
 
 
 
 
 
 
  
 

Images 
 
Bitmap images are made up from tiny dots called pixels. Each pixel will have a 
colour associated with it.  An image can then be constructed from many of pixels 
which will have different colours arranged in rows and columns. 
 
Total number of pixels in image = width in pixels x height in pixels 
 

 
 
Colour depth is the number of bits used to represent each pixel in an image. If we 
have a black and white image it has two colours.  Each pixel can be represented by 
a single pixel because a bit value of 0 is black and 1 is white. 
 
 

Image and corresponding binary encoding 
     

     

     

     

     

0111010001111111000101110 

 
To represent more colours we can use more bits.  For instance if we have 2-bits 
per pixel we can represent 4 colours because we know have 4 binary code 
combinations (00, 01, 10 11) where each code represents a different colour 
 
Pixilation occurs when the image is overstretched. In these situations, the image 
looses quality and has a blocky and blurred appearance. This arises when the 
image is presented at too large a size and there are not enough pixels to 
reproduce the details in the image at this larger size. 
 
Calculating the size of a bitmap image  
 
File size in bits = width in pixels x height in pixels x colour depth 
 
File size in bytes = width in pixels x height in pixels x colour depth / 8 
 

Data Compression 
 
The purpose of data compression is to make the files smaller which means that: 
• Less time / less bandwidth to transfer data 
• Take up less space on the disk 
 
Given that there are 7 bits per ASCII character, the uncompressed size of an ASCII 
phrase is: 
 
size = number of characters (including spaces) x 7 
 
Run Length Encoding (RLE) is a compression method where sequences of the 
same values are stored in pairs of the value and the number of those values. For 
instance, the sequence:  
0 0 0 1 1 0 1 1 1 1 0 1 1 1 1  

would be represented as:  
3 0 2 1 1 0 4 1 1 0 4 1 

 
Huffman coding is a form of compression that allows us to use fewer bits for 
higher frequency data. More common letters are represented using fewer bits 
than less common letters.  For instance, “a” and “e”, which occur in many words 
would be represented with fewer bit than “z” which occurs rarely. 
This allows for much more effective compression than RLE. 
 
The steps involved in Huffman encoding as are follows: 

1. Do frequency table 
2. Order table 
3. Create the tree 
4. Add 1, 0 to the branches 
5. Encode letters 
6. Encode message 

 
Worked Example: How much smaller is the phrase henry horse encoded using 
Huffman encoding compared with its uncompressed size.  
 
Calculate the uncompressed size 
In the phrase henry horse there are 11 characters (including the space).  Therefore 
the uncompressed size is 11 x 7 = 77 bits  
 

Generate ordered frequency table (steps 1 and 2) 

letter frequency 

e 2 

h 2 

r 2 

<space> 1 

o 1 

s 1 

y 1 

n 1 

 
Create the tree and add 1 and 0 to branches (steps 3 and 4) 

 
 
Encode letters 

Letter encoding 

e 01 

h 00 

r 111 

<space> 100 

o 1011 

s 1000 

n 1100 

y 1101 

 
Encode message 
00 01 1100 111 1101 100 00 1011 111 1000 01 = 33 bits  
 
Therefore by using compression we have reduced the size from 77 bits to 33 bits a 
saving of 44 bits. 
 

 

0 2 4 6 8 8 8 8 7 5 3 0 -> 

   00000 00010 00100 01000  

   01000 01000 01000 00111  

   00101 00011 … 

 


