AQA GCSE Chemistry (Combined Science) Unit 5.3: Quantitative Chemistry Knowledge Organiser - Foundation

Conservation of Mass
No atoms can be created or made during a chemical reaction, so the mass of the reactants will equal the mass of the product.

Reactions can be shown as a word or symbol equation
magnesium + oxygen \rightarrow
magnesium oxide
$\mathrm{Mg}+\mathrm{O} \rightarrow \mathrm{MgO}$
Symbol equations should also be balanced; they should have the same number of atoms on each side.
$2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}$

Relative Formula Mass
The relative formulas mass is the sum of all the relative atomic masses of the atoms in the formula.

Examples:
HCl
A_{r} of $H=1$
A_{r} of $\mathrm{Cl}=35.5$
$1+35.5=36.5$

$\mathrm{H}_{2} \mathrm{SO}_{4}$

A_{r} of $\mathrm{H}=1$
A_{r} of $S=32$
A_{r} of $O=16$
$(1 \times 2)+32+(16 \times 4)$
$2+32+64=98$

Concentration of Solutions

Concentration is the amount of a substance in a specific volume of a solution. The more substance that is dissolved, then the more concentrated the solution is.

It is possible to calculate the concentration of a solution with the following equation:
concentration $\left(\mathrm{g} / \mathrm{dm}^{3}\right)=$ mass $(\mathrm{g}) \div$ volume of solvent $\left(\mathrm{dm}^{3}\right)$

The equation can be rearranged to find the mass of the dissolved substance:
mass $(\mathrm{g})=$ concentration $\left(\mathrm{g} / \mathrm{dm}^{3}\right) \times$ volume $\left(\mathrm{dm}^{3}\right)$

Calculating Percentage Mass of an Element in a Compound
percentage mass of an element in a compound $=$

$$
A_{r} \times \frac{\text { number of atoms of that element }}{M_{r} \text { of the compound }}
$$

Find the percentage mass of magnesium in magnesium oxide.

$$
\begin{aligned}
& A_{r} \text { of magnesium }=24 \\
& A_{r} \text { of oxygen }=16 \\
& \mathrm{M}_{\mathrm{r}} \text { of } \mathrm{MgO}=24+16 \\
& =40 \\
& \% \text { mass }=\frac{A_{r}}{M_{r}}=\frac{16}{40}=0.4 \quad 0.4 \times 100=40 \%
\end{aligned}
$$

During a reaction the mass can change. If one of the reactants is a gas, the mass can go up.

E.g.

magnesium + oxygen \rightarrow magnesium oxide

Oxygen from the air is added to the magnesium (making the product) which will be heavier in mass.

If one of the products is a gas, the mass can go down.
E.g.
sodium carbonate \rightarrow sodium oxide + carbon dioxide

When sodium carbonate is thermally decomposed, carbon dioxide gas is produced and released into the atmosphere.

